一种新型CL-20/TKX-50共晶炸药的制备、表征和性能研究

(1.南京理工大学国家特种超细粉体工程技术研究中心,江苏 南京 210094; 2.西安近代化学研究所,陕西 西安 710065)

含能材料; 六硝基六氮杂异伍兹烷(CL-20); 1,1'-二羟基-5,5'-联四唑二羟胺盐(TKX-50); 共晶; 热分析; 感度

Preparation, Characterization and Properties of A New CL-20/TKX-50 Cocrystal Explosive
YUAN Shuo1,GOU Bing-wang2,GUO Shuang-feng2,XIAO Lei1,HU Yu-bing1,CHEN Teng1,HAO Ga-zi1,JIANG Wei1

(1. National Special Superfine Powder Engineer Research Center, Nanjing University of Science and Technology, Nanjing 210094, China; 2. Xi'an Modern Chemistry Research Institute, Xi'an 710065, China)

energetic material; CL-20; TKX-50; cocrystal; thermal analysis; sensitivity

DOI: 10.14077/j.issn.1007-7812.201904010

备注

为降低六硝基六氮杂异伍兹烷(CL-20)的感度,通过溶剂-非溶剂法制备了CL-20和1,1'-二羟基-5,5'-联四唑二羟胺盐(TKX-50)共晶炸药; 通过Materials Studio 5.0软件分析了CL-20和TKX-50分子的表面静电势,并预测了共晶分子间可能的非共价键作用; 采用扫描电镜(SEM)、X射线衍射(XRD)、红外(IR)和拉曼光谱(Raman)对其形貌和结构进行了表征; 采用DSC测试了其热性能,并测试了其撞击感度,预测了其爆轰性能。结果 表明,制备的CL-20/TKX-50共晶呈扁平的片状形貌; XRD、IR和Raman谱图中出现峰的生成、消失、偏移和强度的改变,证明有新的晶格结构形成; 升温速率8℃/min下,CL-20/TKX-50共晶的主要热分解峰温为222.8℃,与CL-20、TKX-50的热分解峰温240.3、234.9℃相比,分别提前了17.5℃和12.1℃,明显区别于具有两个放热过程的CL-20/TKX-50混合物的热分解行为; CL-20/TKX-50共晶炸药的感度显著低于原料CL-20,同时也优于β-HMX,说明其具有良好的安全性能; CL-20/TKX-50共晶的预测爆速和爆压分别为9264m/s和43.8GPa,较CL-20均略微下降,但和β-HMX相比,爆轰性能明显提高。表面静电势能和建模分析均表明,CL-20中—NO2的O与TKX-50中—NH+3的H之间易于形成氢键。

To reduce the sensitivity of CL-20, the CL-20/TKX-50 cocrystal explosive was successfully prepared by solvent-nonsolvent method. The surface electrostatic potentials of CL-20 and TKX-50 were analyzed by Materials Studio 5.0 software, and the possible noncovalent bonding between cocrystal molecules was predicted. Its morphology and structure were characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD), infrared(IR)and Raman spectroscopy(Raman). The thermal properties were measured by differential scanning calorimetry(DSC), the impact sensitivity was tested and the detonation performance was predicted. The results show that the prepared CL-20/TKX-50 cocrystal has a flat sheet shape. The formation, disappearance, shift and change of intensity of peaks in XRD, IR and Raman spectra prove the formation of a new lattice structure. At the heating rate of 8℃/min, the main thermal decomposition peak temperature of CL-20/TKX-50 cocrystal is 222.8℃, that is 17.5℃ and 12.1℃ earlier than that of CL-20 and TKX-50 at 240.3℃ and 234.9℃, respectively, which is obviously different from that of CL-20/TKX-50 mixture with two exothermic processes. The sensitivity of CL-20/TKX-50 cocrystal explosive is significantly lower than that of CL-20 and better than that of β-HMX, which indicates that it has good safety performance. The predicted detonation velocity and detonation pressure of CL-20/TKX-50 cocrystal are 9264m/s and 43.8GPa, slightly lower than that of CL-20, while compared with β-HMX, the detonation performance is significantly improved. Both the surface electrostatic potential energy and modeling analysis show that hydrogen bond is easy to form between O of —NO2 in CL-20 and H of —NH+3 in TKX-50.