|本期目录/Table of Contents|

[1]季丹丹,刘志涛,杨莉莉,等.发射药药料离模膨胀和流动均匀性模拟及在模具设计中的应用[J].火炸药学报,2017,40(4):97-101.[doi:10.14077/j.issn.1007-7812.2017.04.018]
 JI Dan-dan,LIU Zhi-tao,YANG Li-li,et al.Simulation of Die Swell and Flow Uniformity of Gun Propellant Dough and Application in Die Design[J].,2017,40(4):97-101.[doi:10.14077/j.issn.1007-7812.2017.04.018]
点击复制

发射药药料离模膨胀和流动均匀性模拟及在模具设计中的应用()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
40卷
期数:
2017年第4期
页码:
97-101
栏目:
出版日期:
2017-08-30

文章信息/Info

Title:
Simulation of Die Swell and Flow Uniformity of Gun Propellant Dough and Application in Die Design
作者:
季丹丹 刘志涛 杨莉莉 廖昕 王泽山
1. 南京理工大学火药装药技术研究所, 江苏 南京 210094;
2. 上海汽车集团股份有限公司, 上海 201805
Author(s):
JI Dan-dan LIU Zhi-tao YANG Li-li LIAO Xin WANG Ze-shan
1. Charging Technology Institute, Nanjing University of Science and Technology, Nanjing 210094, China;
2. SAIC Motor Company, Shanghai 201805, China
关键词:
发射药计算流体力学(CFD)模具结构正交优化
Keywords:
gun propellantcomputational fluid dynamics (CFD)die structureorthogonal optimization
分类号:
TJ55;TQ562
DOI:
10.14077/j.issn.1007-7812.2017.04.018
文献标志码:
-
摘要:
为了分析挤出成型过程中模具结构参数对七孔硝基胍发射药离模膨胀率及流动均匀性的影响规律,采用计算流体力学方法,对挤出成型过程进行模拟计算,讨论了模具各结构参数重要性的主次关系;对七孔发射药制备模具进行了结构优化,并进行了实验验证。结果表明,模具收缩角对膨胀率和药料出口速度均匀性的影响最大,压缩段高度次之,成型段长度的影响最小。模具优化后流道出口端速度分布均匀性提高36.53%,表明该模拟计算的可靠性与实用性。
Abstract:
To analyze the effect law of die structure parameters in extrusion forming process on the swell ratio and flow uniformity of seven-perforation nitroguanidine gun propellant, the extrusion forming process was simulated by computational fluid dynamic method, the primary and secondary relationship of die structure parameter importance was discussed, the die structure for seven-perforation gun propellant was optimized and experimental validation was performed. The results show that the influence of contraction angle of die on the swell ratio and uniformity of dough exit velocity is the biggest, the compression section height is secondary and the forming section length is smallest. The uniformity of velocity distribution at the flow channel exit end after optimization of die is improved by 36.53%, indicating the reliability and practicability of the simulation calculation.

参考文献/References:

[1] Damse R S, Singh H. Nitramine-based high energy propellant compositions for tank guns[J]. Defence Science Journal, 2000, 50:75-81.
[2] Pillai A G S, Dayanandan C R, Joshi M M, et al. Studies on the effects of RDX particle size on the burning rate of gun propellant[J]. Defence Science Journal, 1996, 46(2):83-86.
[3] Alexander M H, Dagdigian P J, Jacox M E, et al. Nitramine propellant ignition and combustion research[J]. Progress in Energy and Combustion Science, 1991, 17(4):263-296.
[4] Ruth C, Colburn J, Tuerk J. System checkout of the 155mm short-barreled howitzer using telemetry projectile,AD-A258282/3/GAR[R].Springfield:NTIS,1992:1-12.
[5] Keller G E, Horst A W. Effects of propellant grain fracture on the interior ballistics of guns, AD-A209007/4/GAR[R].Springfield:NTIS,1989:1-5.
[6] Lieb R J. Impact-generated surface area in gun propellant, AD-A200468/7/GAR[R].Springfield:NTIS,1988:1-12.
[7] 徐皖育, 何卫东, 王泽山. JMZ发射药力学性能研究[J]. 含能材料, 2007, 15(3):235-239.XU Wan-yu, HE Wei-dong, WANG Ze-shan. Mechanical properties of JMZ gun propellants[J]. Chinese Journal of Energetic Material, 2007, 15(3):235-239.
[8] 堵平, 何卫东, 王泽山. 低温感发射药包覆层的力学性能[J]. 火炸药学报, 2005, 28(2):35-38.DU Ping, HE Wei-dong, WANG Ze-shan. Mechanical performance of coating-layer of LTSC propellant[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2005, 28(2):35-38.
[9] Subhananda Rao,Krishna Y, Rao B N. Fracture toughness of nitramine and composite solid propellants[J]. Materials Science and Engineering A, 2005, 403:125-133.
[10] Schroeder M A, Fifer R A, Miller M S, et al. Condensed-phase processes during combustion of solid gun propellants. Ⅱ. nitramine composite propellants[J]. Combustion and Flame, 2001, 126:1577-1598.
[11] Schroeder M A, Fifer R A, Miller M S, et al. Condensed-phase processes during combustion of solid gun propellants. I. nitrate ester propellants[J]. Combustion and Flame, 2001, 126:1569-1576.
[12] 陈涛, 芮筱亭, 洪俊, 等. 用于药床动态挤压应力研究的半密闭爆发器仿真[J]. 系统仿真学报, 2007, 19(17):4075-4078.CHEN Tao, RUI Xiao-ting, HONG Jun, et al. Semi-closed bomb simulation using study dynamic extrusion stress of charge bed[J]. Journal of System Simulation, 2007, 19(17):4075-4078.
[13] 丁亚军, 应三九. 螺杆挤出过程中物料在线流变行为及其数值模拟[J]. 兵工学报, 2015, 36(8):1437-1442.DING Ya-jun, YING San-jiu. In-line rheological behaviors and numerical simulation of material in extrusion processing[J]. Acta Armamentarii, 2015, 36(8):1437-1442.
[14] 马忠亮, 朱林, 高可政,等. 影响变燃速发射药尺寸波动因素数值计算[J]. 含能材料, 2011, 19(4):445-449.MA Zhong-liang, ZHU Lin, GAO Ke-zheng,et al. Numerical calculation on the fluctuation factors of grain size for variable-burning rate propellant[J]. Chinese Journal of Energetic Materials, 2011, 19(4):445-449.
[15] 张丹丹, 何卫东. 硝基胍七孔发射药挤压成型过程的数值模拟[J]. 火炸药学报, 2014, 36(6):82-86.ZHANG Dan-dan, HE Wei-dong. Numerical simulation of 7-hole nitroguanidine-base gun propellant in extrusion forming process[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2014, 36(6):82-86.
[16] 常飞, 南风强, 何卫东. 多孔硝基胍发射药压伸数值仿真及验证[J]. 含能材料, 2017, 25(2):106-112.CHANG Fei, NAN Feng-qiang, HE Wei-dong. Numerical simulation and verification of porous nitroguanidine gun propellant extrusion[J]. Chinese Journal of Energetic Materials, 2017, 25(2):106-112.
[17] Mu Yue, Zhao Guo-qun. Numerical study of non-isothermal polymer extrusion flow with a differential viscoelastic model[J]. Polymer Engineering and Science, 2008, 48(2):316-328.
[18] 赵军. 一种新型发射药燃烧性能测试和内弹道数值计算方法研究[D]. 南京:南京理工大学,2010.ZHAO Jun. Research on the combustion performance and simulation method on interior ballistics of propellant charge[D]. Nanjing:Nanjing University of Science and Technology,2010.
[19] 任务正,王泽山. 火炸药理论与实践[M]. 北京:中国北方化学工业总公司,2001:852-856.
[20] 叶慈南, 曹伟丽. 应用数理统计[M].北京:机械工业出版社,2004.

相似文献/References:

[1]肖正刚,应三九,徐复铭,等.发射药的等离子体点火燃烧中止试验研究[J].火炸药学报,2007,30(1):17.
[2]王琼林,蒋树君,余斌 刘少武,等.炮射导弹发射药燃气中CO浓度的影响因素[J].火炸药学报,2006,29(6):61.
[3]张力,杜仕国,许路铁,等.甲基紫试验在长贮火药安定性检测中的应用[J].火炸药学报,2006,29(6):74.
[4]王琼林,刘少武,张远波,等.枪用发射药燃烧残渣的测试方法[J].火炸药学报,2006,29(5):57.
[5]曹宏安,江劲勇,路桂娥.浸取/气相色谱法表征发射药中钝感剂的浓度分布[J].火炸药学报,2006,29(3):26.
[6]叶 静.发射药钝感剂分布的萃取测定[J].火炸药学报,2006,29(2):66.
[7]席海军,牟敬海,李荫清,等.双螺杆技术在发射药制造中的应用[J].火炸药学报,2006,29(1):56.
[8]郑波,宋新民,姜志保,等.一种评估库存发射药安全贮存寿命的方法[J].火炸药学报,2005,28(2):29.
[9]堵平,何卫东,王泽山.低温感发射药包覆层的力学性能[J].火炸药学报,2005,28(2):35.
[10]赵毅,黄振亚,刘少武,等.改善高能硝胺发射药力学性能研究[J].火炸药学报,2005,28(3):1.

备注/Memo

备注/Memo:
收稿日期:2017-03-03;改回日期:2017-06-11。
基金项目:国家自然科学基金-青年科学项目(No.51506093)
作者简介:季丹丹(1986-),女,博士研究生,从事含能材料配方设计及工艺研究。E-mail:zihedandan@163.com
通讯作者:廖昕(1961-),男,研究员,从事含能材料配方设计及工艺研究。E-mail:liaoxin331@163.com
更新日期/Last Update: 2017-08-30