|本期目录/Table of Contents|

[1]王可,舒远杰,刘宁,等.聚醚砜酮及其与ε-CL-20复合体系性能的分子动力学模拟[J].火炸药学报,2017,40(4):38-43,49.[doi:10.14077/j.issn.1007-7812.2017.04.007]
 WANG Ke,SHU Yuan-jie,LIU Ning,et al.Molecular Dynamics Simulations for Performance of PPESK and PPESK/ε-CL-20 Composite System[J].,2017,40(4):38-43,49.[doi:10.14077/j.issn.1007-7812.2017.04.007]
点击复制

聚醚砜酮及其与ε-CL-20复合体系性能的分子动力学模拟()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
40卷
期数:
2017年第4期
页码:
38-43,49
栏目:
出版日期:
2017-08-30

文章信息/Info

Title:
Molecular Dynamics Simulations for Performance of PPESK and PPESK/ε-CL-20 Composite System
作者:
王可 舒远杰 刘宁 王晓川 舒尧 武宗凯 丁小勇 卢莹莹
1. 西安近代化学研究所, 陕西 西安 710065;
2. 北京理工大学机电学院, 北京 100081
Author(s):
WANG Ke SHU Yuan-jie LIU Ning WANG Xiao-chuan SHU Yao WU Zong-kai DING Xiao-yong LU Ying-ying
1. Xi’an Modern Chemistry Research Institute, Xi’an 710065, China;
2. Electrical and Mechanical College, Beijing Institute of Technology, Beijing 100081, China
关键词:
聚醚砜酮PPESK六硝基六氮杂异伍兹烷CL-20玻璃化温度结合能力学性能分子动力学
Keywords:
poly(phthalazinone ether sulfone ketone)PPESKhexanitrohexaazaisowurtzitaneCL-20glass transition temperaturebinding energymechanical propertymolecular dynamics
分类号:
TJ55;O641
DOI:
10.14077/j.issn.1007-7812.2017.04.007
文献标志码:
-
摘要:
通过在二氮杂萘酮中引入叠氮基和氨基,设计了一种新型聚醚砜酮(PPESK),并研究了其对六硝基六氮杂异伍兹烷(ε-CL-20)稳定性和力学性能的影响。应用COMPASS力场,构建PPESK无定型晶胞并研究了其密度和玻璃化转变温度;对ε-CL-20的4个主要生长面与PPESK组成的界面晶体模型进行了分子动力学(MD)模拟,求得PPESK/ε-CL-20复合体系的内聚能密度、结合能和力学性能。结果表明,与文献相比,计算所得的PPESK密度和玻璃化温度较为准确;ε-CL-20与PPESK的溶度参数差值(Δδ)为8.512 (J/cm31/2,两者具有一定相容性;PPESK与ε-CL-20主要生长面的结合能大小依次为:(0 1 1) > (0 0 2) > (1 0 -1) > (1 1 0),其中(0 1 1)为最大生长面,所占比例为38.2%;4种复合体系的力学系数均大幅度减小,表明PPESK的加入有效降低了ε-CL-20的刚性和各向同性,体系塑性增强。
Abstract:
A new poly(phthalazinone ether sulfone ketone) (PPESK) was designed by introducing azide and amine into phthalazinone, and its effects on the stability and mechanical properties of ε-hexanitrohexaazaisowurtzitane (ε-CL-20) were studied. Based on COMPASS force field, the amorphous cell of PPESK was constructed and its density and glass transition temperature were studied. The molecular dynamics (MD) simulations of interface crystal model composed of four main growth face of ε-CL-20 and PPESK were performed, and the cohesive energy densities, binding energies and mechanical properties of PPESK/ε-CL-20 composite system were obtained. The results show that the density and glass transition temperature of PPESK obtained by calculation are accurate compared with literature. The difference of the solubility parameters (Δδ) between ε-CL-20 and PPESK is 8.512 (J/cm3)1/2, indicating that they have certain compatibility. The order of binding energy between PPESK and the main growth face of ε-CL-20 is (0 1 1) > (0 0 2) > (1 0 -1) > (1 1 0). In which, the proportion of (0 1 1) face is 38.2% and it is the largest one; the mechanical coefficients of four kinds of PPESK/ε-CL-20 composite system are greatly decreased, indicating that the addition of PPESK can effectively reduce the rigidity and isotropy of ε-CL-20, and the plasticity of systems can be enhanced.

参考文献/References:

[1] Löbbecke S, Bohn M. Thermal behavior and stability of HNIW(CL-20)[J]. Energetic Materials-production, Processing and Characterization, 1998:145-1.
[2] 欧育湘, 孟征, 刘进全. 高能量密度化合物CL-20应用研究进展[J]. 化工进展, 2007, 26(12):1690-1694.OU Yu-xiang, MENG Zheng, LIU Jin-quan. Review of the development of application technologies of CL-20[J]. Chemical Industry and Engineering Progress, 2007, 26(12):1690-1694.
[3] 舒远杰, 霍冀川. 炸药学概论[M]. 北京:化学工业出版社, 2011.
[4] 舒远杰. 高能硝胺炸药的热分解[M]. 北京:国防工业出版社, 2010.
[5] 袁林林, 肖继军, 赵峰, 等. ε-CL-20不同晶面与PVA、PEG复合物的MD模拟[J]. 含能材料, 2016, 24(2):124-128.YUAN Lin-lin, XIAO Ji-jun, ZHAO Feng, et al. Molecular dynamics simulation of composites formed with ε-CL-20 and PVA, PEG on different crystalline surfaces[J]. Chinese Journal of Energetic Materials, 2016, 24(2):124-128.
[6] 陶俊, 王晓峰, 赵省向, 等. ε-CL-20/含能黏结剂复合体系结合能及力学性能的模拟[J]. 含能材料, 2016, 23(4):315-322.TAO Jun, WANG Xiao-feng, ZHAO Sheng-xiang, et al. Simulation and calculation for binding energy and mechanical properties of ε-CL-20/energetic polymer binder mixed system[J]. Chinese Journal of Energetic Materials, 2016, 23(4):315-322.
[7] Vavra P. Procedure for selection of molecular structures of explosives having high performance[C]//International Annual Conference-fraunhofer Institut Fur Chemische Technologie. Pfinztal:Conference-fraunhofer Institut Fur Chemische Technologie, 1999:49.
[8] 蹇锡高, 廖功雄, 王锦艳. 含二氮杂萘酮结构聚芳醚酮和聚芳醚砜研究进展[J]. 中国塑料, 2002, 16(4):11-15.JIAN Xi-gao, LIAO Gong-xiong, WANG Jin-yan. Research progress of poly(arylene ether ketone)s and poly(arylene ether sulfone)s containing phthalazinone moieties[J]. China Plastic, 2002, 16(4):11-15.
[9] 王锦艳, 蹇锡高. 含二氦杂萘酮结构全芳香杂环聚合物的研究进展[J]. 高分子通报, 2011(9):22-34.WANG Jin-yan, JIAN Xi-gao. Progress on synthesis of heterocyclic polymers containing phthalazinonemoiety and the relationship of their structure and properties[J]. Chinese Polymer Bulletin, 2011(9):22-34.
[10] 蹇锡高, 王锦艳. 含二氮杂萘酮联苯结构高性能工程塑料研究进展[J]. 中国材料进展, 2012,31(2):16-22.JIAN Xi-gao, WANG Jin-yan. Progress on high performance engineering plastics containing phthalazinone moieties and their applications[J]. Materials China, 2012,31(2):16-22.
[11] Sewell T D, Menikoff R, Bedrov D, et al. A molecular dynamics simulation study of elastic properties of HMX[J]. The Journal of chemical physics, 2003, 119(14):7417-7426.
[12] Qian Wen, Shu Yuan-jie, Li Hua-rong, et al. The effect of HNS on the reinforcement of TNT crystal:a molecular simulation study[J]. Journal of Molecular Modeling, 2014, 20(10):1-7.
[13] Long Yao, Liu Yong-gang, Nie Fu-de, et al. Theoretical study of impacting and desensitizing for HMX-graphite mixture explosive[J]. Shock Waves, 2012, 22(6):65010-65028.
[14] Sun H. COMPASS:an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds[J]. The Journal of Physical Chemistry B, 1998, 102(38):7338-7364.
[15] Qiu Ling, Xiao He-ming, Zhu Wei-hua, et al. Ab initio and molecular dynamics studies of crystalline TNAD(trans-1,4,5,8-tetranitro-1,4, 5,8-tetraazadecalin)[J]. The Journal of Physical Chemistry B, 2006, 110(22):10651-10661.
[16] Acceryls Inc. Material Studio 5.5[CP/CD]. San Diego:Acceryls Inc, 2010.
[17] Yarovsky I, Evans E. Computer simulation of structure and properties of crosslinked polymers:application to epoxy resins[J]. Polymer, 2002, 43(3):963-9.
[18] Yang Shao-rui, Qu Jian-min. Computing thermomechanical properties of crosslinked epoxy by molecular dynamic simulations[J]. Polymer, 2012, 53(21):4806-4817.
[19] 赵信歧, 施倪承. ε-六硝基六氮杂异戊兹烷的晶体结构[J].科学通报, 1995, 40:2158-2160.ZHAO Xin-qi, SHI Ni-cheng. Crystal structure of ε-hexanitrohexaazaisowurtzitane[J]. Chinese Science Bulletin, 1995, 40:2158-2160.
[20] Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. Jouanal of Chemical Physics, 1980, 72(4):2384-2393.
[21] Ma Song, Li Ya-jin, Li Yang, et al. Research on structures, mechanical properties, and mechanical responses of TKX-50 and TKX-50 based PBX with molecular dynamics[J]. Journal of molecular modeling, 2016, 22(2):1-11.
[22] Xu Xiao-juan, Xiao He-ming, Xiao Ji-jun, et al. Molecular dynamics simulations for pure ε-CL-20 and ε-CL-20-based PBXs[J]. The Journal of Physical Chemistry B, 2006, 110(14):7203-7207.
[23] 夏露. 高能材料结构和性能的分子动力学模拟[D]. 苏州:苏州大学, 2008.XIA Lu. Molecular dynamics simulations of the structures and properties of highly energetic materials[D]. Suzhou:Soochow University, 2008.
[24] Watt J P, Davies G F, O’Connell R J. The elastic properties of composite materials[J]. Reviews of Geophysics, 1976, 14(4):541-563.
[25] Weiner J H. Statistical Mechanics of Elasticity[M]. New York:John Wiley, 1983.
[26] Qiu Ling, Xiao He-ming. Molecular dynamics study of binding energies, mechanical properties, and detonation performances of bicyclo-HMX-based PBXs[J]. Journal of Hazardous Materials, 2009, 164(1):329-336.
[27] Scatchard G. Equilibria in non-electrolyte solutions in relation to the vapor pressures and densities of the components[J]. Chemical Reviews, 1931, 8(2):321-333.
[28] Watt J P, Davies G F, O’Connell R J. The elastic properties of composite materials[J]. Reviews of Eophysics and Space Physics, 1976, 14:541-563.
[29] Qian Wen, Shu Yuan-jie, Ma Qing, et al. The reinforcement of the TNT system by a newly-designed GAP-based polyurethane-urea:a molecular simulation investigation[J]. Central European Journal of Energetic Materials, 2016, 13(2):411-426.
[30] 肖继军, 朱卫华, 朱伟, 等. 高能材料分子动力学[M]. 北京:科学出版社, 2013.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2016-12-21;改回日期:2017-03-08。
基金项目:国家自然科学基金(No.51373159);国际地区交流与合作项目(No.51511130036)
作者简介:王可(1991-),男,助理研究员,从事含能材料理论设计研究。E-mail:zhuazhangmangxiewk@163.com
通讯作者:舒远杰(1969-),男,研究员,从事含能材料设计与合成研究。E-mail:1204172675@qq.com
更新日期/Last Update: 2017-08-30